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Abstract
In this paper a new kind of anti-unification problems is introduced, where the substitutions anti-
unifying two terms are constrained to be in a sub-language of that used to express the terms
themselves. We give an algorithm for such constrained anti-unification modulo some equational
theory. This algorithms uses a representation of terms as directed acyclic graphs. It is then used
in a program transformation algorithm that eliminates some function symbols from programs.
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1 Introduction

The anti-unification problem has been introduced in 1970 independently by J.C. Reynolds [14]
and G.D. Plotkin [12]. This problem is the dual of the unification problem. While unification
aims at computing a common instance of two terms, the anti-unification computes a template
(generalization or anti-unifier) of two terms such that substitutions applied to this template
produce the input terms i.e., compute a term t such that ∃σ1, σ2, t1 = tσ1 and t2 = tσ2.
The unification problem has been widely studied in the fields of proof theory and rewriting
(see [2] for a survey) and therefore many papers have presented efficient solutions where
equality may be considered modulo various equational theories (e.g., [15, 4]).

Algorithms for first order anti-unification have been introduced in [14, 12, 4] and one for
higher order anti-unification, in the Calculus of Construction, is presented in [11]. These
algorithms are used, for instance, for proof generalization and, more recently, termination
[1] using generalization modulo some equational theory [13]. Anti-unification has also been
used to find general properties or solutions of algebraic expressions [7, 10] or to detect code
duplication [3, 5]. All of these applications focus on computing the most specific (or least
general) template which is the dual of the most general unifier.

Our goal is slightly different, the constrained anti-unification problem consists in com-
puting a template with the constraint that the language of the terms allowed in the substi-
tutions is a strict subset of that of the input terms. This particular notion of anti-unification
is tailored to be used in a program transformation algorithm introduced in [9]. This trans-
formation eliminates square roots and divisions in some embedded straight line programs
(programs without loops), used in aeronautics [8] in order to compute exactly with real
numbers. This leads us to transform the variable definitions that contain these symbols in
order to eliminate these operations from their bodies. Given a variable definition let x = b
in sc we call b the body and sc the scope of the variable definition. A naive inlining (i.e.,
sc[x := b]) provokes an explosion of the size of the produced code. To avoid this explosion,
we use the constrained anti-unification of arithmetic terms to eliminate square roots and
divisions from the variable definition bodies. For instance, since (x1 +√x2)/x3 is a template
of a+

√
b · c+ d and e · f/(g + h), we can do the following transformation:

let x =
if F then a+

√
b · c+ d else e · f/(g + h)

in SC
−→

let (x1,x2,x3) =
if F then (a, b ·c+d, 1) else (e ·f, 0, g+h)

in SC[x := (x1 +√x2)/x3]
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That eliminates square roots and divisions from the body of the variable definition. There-
fore, the language allowed in the substitutions, that are used to define the new body of the
variable definition, contains neither the square root operator nor the division one. Moreover,
we have to compute a “small” template since we want to minimize the size of the new scope.
This template computation is done modulo the arithmetic equational theory and uses a dag
representation of expressions in order to minimize the size of this template.

In this paper, we first state a formal definition of this constrained anti-unification problem
and give some properties such as sufficient conditions on the equational theory for complete-
ness, then we introduce a constrained anti-unification algorithm for arithmetic expressions
and finally we present how this algorithm is used for the program transformation.

2 Anti-Unification with Language Constraint

In this section we first describe the problem of constrained anti-unification on tree-like
terms. As usual, given a set of variable X and a signature Σ, we denote the set of terms by
T (Σ,X ), and the set of symbols in Σ of arity m by Σ(m). A substitution σ, is a mapping
from a finite subset of X , its domain, denoted by D(σ), to T (Σ,X ), I(σ) being the image
({t ∈ T (Σ,X )|∃x ∈ D(σ), t = σ(x)}). tσ is the application of σ to a term t. [x 7→ e] is the
substitution that replaces x by e. The composition (σ1σ2) is the substition such that for all
term t, we have t(σ1σ2) = (tσ1)σ2. We will usually denote by x, y, z... the variables in X ,
by a, b, c... the constants in Σ(0) and by f, g, h... the other symbols in Σ.

2.1 Definition
Given these definitions and notations, we define the constrained anti-unification:

I Definition 2.1 (Template with constraint). Given Σ ⊆ Σ and a term s in T (Σ,X ), a term t

in T (Σ,X ) is a constrained template of s, denoted s 4Σ t when there exists a substitution
σ such that tσ = s and I(σ) ⊂ T (Σ\Σ,X ).

Therefore all the forbidden symbols (i.e., the symbols in Σ) that are in s appear in t and
not in the substitution. We extend this definition to define the template of a set of terms:

I Definition 2.2 (Template of finite set). Given Σ ⊆ Σ and a finite set of terms S ⊆ T (Σ,X ),
a term t in T (Σ,X ) is a template of S, when for all s in S, s 4Σ t.

We call such a template a Σ-template. Let us first give an example of Σ-template:

I Example 2.1. If Σ = {f, g, a, b} and Σ = {f, a} then f(x, y, a) is a Σ-template of f(x, z, a)
and f(b, g(x), a) with the substitutions [y 7→ z] and [x 7→ b, y 7→ g(x)].

I Remark. For unconstrained problems, there is always a template: a (fresh) variable. This
is no longer the case when we add constraints e.g., given Σ and Σ from example 2.1,
f(x, y, a) and g(b) do not have a common Σ-template.

We aim at computing a common template of a finite set of terms. Since the Σ-anti-unification
relation is transitive, a template of a set of terms can be recursively computed by using anti-
unification on pairs of terms.

I Proposition 2.1 (Σ-template transitivity). If r is a Σ-template of s and s a Σ-template of t
then r is a Σ-template of t

Proof. s = rσ ∧ t = sσ′ =⇒ t = r(σσ′) and I(σσ′) ⊆ T (Σ,X ) J

Without any equational theory, the constrained anti-unification is straightforward
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I Algorithm 2.3 (Constrained anti-unification algorithm). The following recursive function
ctmp computes (if it exists) a Σ-template of t and t′:

(V) when (t, t′) ∈ T (Σ\Σ,X )× T (Σ\Σ,X ), ctmp(t, t′) = x

otherwise
(R) ctmp(f(t1, ..., tn), f(t′1, ..., t′2)) = f(ctmp(t1, t′1), ..., ctmp(tn, t′n))
(F) ctmp(f(...), g(...)) = Fail (No Σ-template can be computed)

Unlike in the usual anti-unification, we are not interested in computing the most specific
template, thus when the two terms are in T (Σ\Σ,X ), we terminates the template compu-
tation by using a fresh variable.

This anti-unification fails on terms that have different head symbols. In the next section
we introduce anti-unification modulo an equational theory in order to be able to anti-unify
larger sets of terms.

2.2 Anti-Unification Modulo an Equational Theory
In this section we present that some properties on the sets Σ and Σ and the use of equational
theories might enlarge the set of terms that can be anti-unified and even allow the constrained
anti-unification to be complete.

I Definition 2.4 (Completeness). Given Σ ⊆ Σ, Σ-constrained anti-unification is said to be
complete when every finite set of terms has a Σ-template.

One simple property that can be used to anti-unify terms with different head symbols is
the use of neutral elements. It allows us to extend the set of rules for template computation:

I Definition 2.5 (Neutral element rule). If f in Σ(2) has a right neutral element ef in Σ(0)

then for all terms s, t1, t2 we can apply the following rules:
(LRI) ctmp(f(t1, t2), s) = f(ctmp(t1, s), ctmp(t2, ef ))
(RRI) ctmp(s, f(t1, t2)) = f(ctmp(s, t1), ctmp(ef , t2))

We can define symmetrical rules (RLI) and (LLI) when f admits a left neutral element.

I Example 2.2 (Rational number arithmetic). If Σ = Q ∪ {+,−,×, /} and all the binary
operators are forbidden (Σ = {+,−,×, /}) you can always anti-unify e.g.,
(x× y + (t× u/v))− (w + z) is a template of a+ (b× c)/d and a′ × b′ − (c′ + d′))

There is a condition that ensure the completeness of the constrained anti-unification.
This is the existence of a switch operator:

I Definition 2.6 (Switch operator). A switch operator sw in T (Σ,X ) is a term that has the
following property:

∃ e1, e2 ∈ T (Σ,X ), x, y, z ∈ X ,
∀ s, t ∈ T (Σ,X ), sw[x 7→ e1, y 7→ s, z 7→ t] = s ∧ sw[x 7→ e2, y 7→ s, z 7→ t] = t

The terms e1 and e2 are called the switch elements.

I Proposition 2.2 (Switch completeness). If T (Σ,X ) allows a switch operator and if the
switch elements are Σ-anti-unifiable, then any finite set of terms has a Σ-template.

Proof. Given e, a Σ-template of e1 and e2, and the corresponding substitutions σ1 and σ2,
then for all s and t in T (Σ,X ), sw[x 7→ e, y 7→ s, z 7→ t] is a Σ-template of s and t with the
same substitutions σ1 and σ2. J

In many usual theories, this operator can be constructed and allows the completeness of the
constrained anti-unification.
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I Example 2.3 (Switch operators).
In arithmetic, sw = x× y + (1− x)× z with e1 = 1 and e2 = 0.
On booleans, sw = (x ∧ y) ∨ (¬x ∧ z) with e1 = > and e2 = ⊥.
In a programming language, sw = if x then y else z with e1 = true and e2 = false.
When a switch element exists we define a switch rule that can always be applied:
I Definition 2.7 (Switch rule).

(SW) ctmp(t1, t2) = sw[x 7→ e, y 7→ s, z 7→ t]
As one can notice, in every theory that has the following properties:

a binary function f , with an identity element ef
a binary function g, with ef as absorbing element and an identity element eg

we can construct a similar switch operator using two switch variables. If ef and eg are Σ-
anti-unifiable, then sw2 = f(g(s1, s), g(s2, t)), is a Σ-template of s (with [s1 7→ eg, s2 7→ ef ])
and t (with [s1 7→ ef , s2 7→ eg]).

However, since we are looking for a small template, we avoid the use of the switch rule as
much as possible since the size of the produced template is the sum of the sizes of the input
elements. The main criteria to chose the constrained template is the number of forbidden
function occurrences that we want to minimize. We introduce directed acyclic graphs as
representations of terms to help us to minimize this number in the constrained template.

2.3 Anti-Unification on Dag-like Terms
We want to minimize the number of forbidden function occurrences in the template t. More
precisely, we want to minimize the number of function calls on distinct elements, that is
the cardinal of the following set, {f(a) | f(a) � t ∧ f ∈ Σ}. For example the number of
distinct f calls in g(f(b), f(a), f(a)) is 2. In order to compute a template which minimizes
this number, we adopt a dag based representation. This dag representation uses pointers to
represent sharing. Therefore the dag nodes are represented by terms extended with pointers
in N∗, i.e., T (Σ,X ,N∗), and a dag is a list of such nodes. We call the length of the dag the
length of the list. We denote by :: the cons infix constructor, by [dni]n1 the list [dn1; ...; dnn]
and by pt(dn) the set of pointers in node dn. Since the anti-unification of dags is more
restrictive, we only apply sharing to sub-terms that are forbidden functions arguments.
Therefore, assuming f is the only forbidden function symbol, the term g(f(a), f(h(b, f(a))))
is represented by: 0 1 2

g(f(2̇), f(1̇)) h(b, f(2̇)) a

We use array representation for dags and separate the first element (the root) for clarity
reasons. To assure acyclic behaviors we introduce a right dependency condition.
I Definition 2.8 (Right dependency condition). Given d = [di]n0 a dag, d is a right dependency
dag when all pointers in node di are strictly greater than i (i.e., pt(di) ⊆ {i+ 1; ...;n}).
Thus we define the following order denoted �̇ on dags.
I Definition 2.9 (Order on dags). Given [dni]n0 and [dgi]n0 we say that [dni]n0�̇[dgi]n0 when

∀i ≥ 1, dni = dgi ∧ (min(pt(dn0)) < min(pt(dg0)) ∨ dn0 � dg0)
where � is the usual strict sub-term relation.
The relation �̇ is well founded since it is the lexical order based on well founded relations <
on {0, ..., n} and � on terms (i.e., dn0 � dg0 ⇒ min(pt(dn0)) ≤ min(pt(dg0))). Therefore
it provides us a termination criteria for a set of rule and an induction scheme for right
dependency dags. Using that order, we can define the function that transform any dag into
its corresponding term.
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I Definition 2.10 (Dag to term). The associated term of a dag d, denoted by d>, is defined by:
(x :: [dni]n1 )> = x

(f(dn1, ..., dnm) :: [dni]n1 )> = f((d1 :: [dni]n1 )>, ..., (dnm :: [dni]n1 )>)
(k̇ :: [dni]n1 )> = (dnk :: [dni]n1 )>

The equality of associated terms means that the pointers identifiers are irrelevant:
I Example 2.4 (Dag equivalence).

[f(1̇, 2̇, 3̇); a; b; c]> = [f(1̇, 3̇, 2̇); a; c; b]> = [f(3̇, 2̇, 1̇); c; b; a]>

This renaming is the application of a permutation to the dag with the following definition:
I Definition 2.11. Given τ a permutation of {1, ..., n}, the application of τ to a dag node is
defined by: τ(x) = x

τ(f(d1, ..., dm) = f(τ(d1), ..., τ(dm))
τ(k̇) = ˙(τ(k))

and τ([d0; d1; ...; dn]) = [τ(d0); τ(dτ−1(1)); ...; τ(dτ−1(n))]).
Applying such a permutation to a dag does not change the term it represents
I Proposition 2.3 (Permutation preserves the semantics). Given a dag d and a permutation τ
of {1, ..., n}, we have that (d)> = (τ(d))>

Proof. By induction using the order from definition 2.9, we only give the pointer case:
(τ(k̇ :: [di]n1 ))> = ( ˙τ(k) :: [τ(dτ−1(i))]n1 )> = (τ(dk :: [di]n1 ))> = (dk :: [di]n1 )> J

Of course, for every dag we can find at least one permutation such that the representation
satisfies the right dependency condition:
I Proposition 2.4 (Right Dependency Representation). For all dags d there exists a permuta-
tion τ such that τ(d) is a right dependency dag

Proof. Renaming nodes using breadth-first numbering defines a right dependency dag. J

In order to minimize the number of forbidden function calls (i.e., the length of the dag),
the anti-unification of dags requires to find for each pointer another unique pointer it will
be anti-unified with, the corresponding terms being then anti-unified. This is equivalent to
rename node identifiers in the dags in a first step and then only anti-unifying pointers and
terms with the same identifiers in a second, e.g.,

g(f(1̇), f(2̇)) a b

g(f(2̇), f(1̇)) c d
−→ g(f(1̇), f(2̇)) a b

g(f(1̇), f(2̇)) d c
−→ g(f(1̇), f(2̇)) x y

Thus we can try different permutations on the input terms before anti-unifying in order to
find the more suitable dag representation for template computation.
I Definition 2.12 (Pointer anti-unification). The only rule for pointers is the equality rule:

(EP ) ctmp(ȧ,ȧ) = ȧ

and we have to compute a common template node by node:
I Definition 2.13 (Common template of dags). The common template of dags is computed
node by node: ctmp([dni]n0 , [dgi]n0 ) = [ctmp(dni, dgi)]n0
This definition only allows the anti-unification of dags of the same length, however we can
extend any dag with any list of nodes without changing its associated term:
I Proposition 2.5 (Dag extension). Given [dni]n0 a dag:

∀ dnn+1, ..., dnm ∈ T (Σ,X ,N∗), ([dni]n0 )> = ([dni]m0 )>

Proof. dnn+1, ..., dgm are never reached in the computation of the associated term. J
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It allows the extension of the smaller input dags to the length of the longest one using any
kind of nodes. We will see in the next section how to choose these nodes. We also have to
ensure that the common template is an acyclic graph. This is the reason why we enforced
the acyclicity with the right dependency condition since the computation of the template
node by node when the inputs are right dependency dags produces an acyclic graph.
I Proposition 2.6 (Template right dependency). Using any set of rules in (V ), (R), (F ), (EP ),
(SW ) and all neutral rules on right dependency dags produces a right dependency dag:
∀i ∈ {0; ...;n}, (pt(dni) ∪ pt(dgi)) ⊆ {i+ 1; ...;n} =⇒ pt(ctmp(dni, dgi)) ⊆ {i+ 1; ...;n}

Proof. By induction, trivial for rules (V ), (R), (F ),
(EP ) ȧ appears in both dni and dgi, thus a ∈ {i+ 1; ...;n}

(LRI) the identity element is a term in T (Σ,X ) without any pointer, pt(t2, ef ) = pt(t2)
(SW ) sw and e are terms, thus pt(sw[x 7→ e, y 7→ s, z 7→ t]) = (pt(s) ∪ pt(t)) J

The general problem of constrained anti-unification being introduced, we present in the
following section a constrained anti-unification algorithm for terms in arithmetic.

3 Constrained Anti-Unification in Arithmetic

This section introduces a constrained anti-unification of arithmetic expressions defined with
+, −, ×, /, √ . The constraint is that square root and division are the forbidden function
symbols. In this algorithm, we consider equality modulo theory of arithmetic and use a dag
representation of terms.

The theory of arithmetic includes enough axioms (e.g., commutativity, associativity,
distributivity...) to be able to transform any expression into an equivalent expression that
has the following form: ∑n

i=1 ai
∏mi

ji=1
√
bji∑n

i=1 ci
∏mi

ji=1
√
dji

where none of the ais or cis contain any square root or division and where the bji and dji

are also in that normal form. We introduce a direct acyclic graph representation for tuples
of arithmetic expressions that corresponds to this normal form, this representation allows
sharing of the square roots by using pointers:
I Definition 3.1 (Dag definition).

dn ::= PairD(dn1, dn2)
| DivD(dn1, dn2)
| VectD([(e1, [dn1,1, ..., dn1,j1 ]), ..., (em, [dnm,1, ..., dnm,jm

])])
| ExprD(e)
| ṅ

d := [dn1, ..., dnk]

Where e, e1, ..., em are in A
√
, the set of square root and division free arithmetic terms. We

define the associated arithmetic term JdK of the dag d with the following rules:
I Definition 3.2 (Dag associated arithmetic term).

JPairD(d01, d02) :: [di]n1 K = (Jd01 :: [di]n1 K, Jd02 :: [di]n1 K)
JDivD(d01, d02) :: [di]n1 K = Jd01 :: [di]n1 K / Jd02 :: [di]n1 K
JVectD([(ej , [sqjk]pj

1 )]m1 ) :: [di]n1 K =
∑m
j=1 ej ·

∏pj

k=1
√

Jsqjk :: [di]n1 K
JExprD(e) :: [di]n1 K = e

Jk̇ :: [di]n1 K = Jdk :: [di]n1 K
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Therefore any tuple of expressions can be represented by such a dag, we still ensure that
the dag is acyclic by using the right dependency condition.
I Example 3.1 (Dag representation). ( a1

a2+a3·
√
d
, b ·
√
d ·
√
c2 ·
√
d) is represented by:

PairD(DivD(ExpD(a1), VectD([(a2, []); (a3, [2̇])])), VectD([(b, [2̇; 1̇])])) VectD([(c2; 2̇)]) ExpD(d)

For clarity and concision, we prefer an array representation of dags using the semantics even
if the algorithm is described with dag constructors e.g.,

( a1

a2+a3·
√

2̇
, b ·
√

2̇ ·
√

1̇) c1 + c2 ·
√

2̇ d

In section 2.3 we already introduced the semantics of a dags as the corresponding tree term.
The associated arithmetic term is a new layer of interpretation for these terms.
I Example 3.2 (Dag interpretations).

[PairD(VectD(a, [1̇]),ExpD(b));ExpD(c)]> = PairD(VectD(a, [ExpD(c)]),ExpD(b))
J[VectD(a, [1̇]);ExpD(c)]K = a ·

√
c = J[VectD(a, [ExpD(c)])]K

The equality of the tree term semantics implies the equality of the arithmetic interpretation:
I Proposition 3.1 (Tree term semantics and arithmetic term semantics). For every dag d1 and
d2, if d>1 = d>2 then the associated arithmetic terms are equal Jd1K = Jd2K

In this section, we are interested in anti-unifying modulo arithmetic interpretation since our
goal is to use the dag representation to compute a constrained template of arithmetic terms.
I Definition 3.3 (Arithmetic dag constrained anti-unification). Given two dags d1 and d2, we
aim at computing a dag d, such that it exists two substitution σ1 and σ2 from X to A

√

such that JdKσ1 =A Jd1K and JdKσ2 =A Jd2K where =A denotes the equality modulo the
arithmetic theory.
In fact, we only deal with a subset of such dags. In order to focus on minimizing the number
of square roots on distinct expressions, only the VectD constructors contain pointers to
other nodes and they contain only pointers. Thus only the root node can contain PairD
constructors since the other nodes represent the different square roots of the expression.
I Definition 3.4 (Well formed arithmetic dags). A dag [di]n0 is well formed if

it is a right dependency dag, ∀i, pt(di) ⊆ {i+ 1, ..., n}
PairD(a1, a2) � di =⇒ i = 0
a� VectD(l) =⇒ ∃k, a = k̇

k̇ � di =⇒ ∃l, k̇ � VectD(l) � di
where � is strict and ≤≤ the large sub-term relation on dag nodes.
The arithmetic expressions that are leaves of these dags are already square root or division
free, therefore, the generalization of two leaves is a variable. Thus the {√, /}-anti-unification
consist of computing a common template of the dag structure.

The VectD constructor is interpreted as a sum of products and both addition and mul-
tiplication are associative and commutative. This means that both lists do not need to be
ordered, thus we define the range of a VectD node:
I Definition 3.5 (VectD Range). Given VectD([(ej , [sqjk]pj

1 )]m0 ) a dag node, we define its
Range as the following set of sets: {{sq11, ..., sq1p1}, ..., {sqm1, ..., sqmpm

}}
Since all the ej are square roots and division free we can construct templates for any VectD
node by only using the Range:
I Proposition 3.2 (VectD Range). Given VectD([ei, li]m1 ) and VectD([xi, l′i]n1 ) two dag nodes
(where for all i, xi is a variable) then ifRange([ei, li]m1 ) ⊆ Range([xi, l′i]n1 ) then VectD([xi, l′i]n1 )
is a constrained template of VectD([ei, li]m1 )
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Proof. We use the substitution σ(xi) =
{
ej if {sq | sq ∈ l′i} = {sq | sq ∈ lj}
0 if not J

Following the principles of dag anti-unification we introduced in Section 2.3, we can define
the arithmetic constrained dag anti-unification.

I Definition 3.6 (Arithmetic dag anti-unification). The anti-unification node by node is almost
straightforward, we describe some of the rules, the other cases being straightforward:

PairD: the expressions to anti-unify are supposed to have the same type, therefore they
have the same PairD structure, the only rule is:

(P ) ctmp(PairD(d11, d12),PairD(d21, d22)) = PairD(ctmp(d11, d21), ctmp(d12, d22))
DivD: We use 1 as neutral element when one of the head symbols is not the division:

(DI) ctmp(DivD(d11, d12), t) = DivD(ctmp(d11, t), ctmp(d12, ExprD(1)))
ExprD: the generalization of square root and division free expressions is a variable:

(E) ctmp(ExprD(e1),ExprD(e2)) = ExprD(x)
However, as in usual computation of least general template [1, 5], we record the already
anti-unified terms and reuse the variable if possible.
VectD: we use the template construction using the range from Proposition 3.2:

(V R) ctmp(VectD(lv1),VectD(lv2)) = VectD([(xi, li)])
with Range([(xi, li)]) = Range(lv1) ∪Range(lv2)

(V 0) ctmp(VectD(l),ExprD(e)) = VectD([(xi, li)])
with Range([(xi, li)]) = Range(l) ∪ {∅}

I Proposition 3.3 (Anti-unification correctness). The rules introduced in Definition 3.6 com-
pute a √ , /-constrained anti-unifier modulo arithmetic theory.

Proof. By induction, correctness of rules (P ) and (E) is trivial.
(DI) 1 is a right neutral element for division: ∀e, e = e/1
(V R) using Proposition 3.2
(V 0) (VectD([(0, l1), ..., (e, []), ..., (0, ln)]) :: l)> = e×

∏
x∈∅
√
x = e J

In order to anti-unify dags node by node we first need to extend the smallest dags so
that all the dags we want to anti-unify have the same length. A simple solution would be to
extend these dags with non-pointed elements equals to 0 or 1 or any other constant previously
chosen. However this is not very efficient and by using more nodes we can change the dag
representation of the expression in order to produce smaller templates. Therefore, in a first
step we will extend the dags with undefined elements (#). These elements are not pointed
and will be replaced later in the anti-unification process. Replacing undefined elements with
appropriate expressions in the dags extension process has two different objectives:
1. Compute more compact templates by breaking unnecessary sharing introduced by the

dag representation and avoid the use of the switch operation:
I Example 3.3 (Node duplication).
√

1̇,
√

2̇ b a√
1̇,
√

1̇ c #
=
√

1̇,
√

2̇ b a√
1̇,
√

1̇ c c
=
√

1̇,
√

2̇ b a√
1̇,
√

2̇ c c
−→

√
1̇,
√

2̇ x y

2. Avoid the use of new fresh variables when expressions are already identical variables:
I Example 3.4 (Avoiding renaming).
√

1̇ x +
√

2̇ y

0 # #
=
√

1̇ x +
√

2̇ y

0 x +
√

2̇ y
−→ z1

√
1̇ x +

√
2̇ y

The node duplication relies on the following transformations:



Pierre Neron, Raphaël Bost 9

I Definition 3.7 (Node and pointer duplication transformations). The following transformations
defines the node duplication (ND) and the pointer exchange (PD):

(ND) when k < l : [d0, ..., dk−1,#, dk+1, ..., dn] −→ [d0, ..., dk−1, dl, dk+1, ..., dn]
(PD) when k < l and dk = dl : [di]n0 −→ [[k̇/l̇]d0, ..., [k̇/l̇]dk−1, dk, ..., dn]

where [k̇/l̇]d is the node d where some occurrences of l̇ are replaced by k̇.

I Proposition 3.4 ((ND) and (PD) correctness). (ND) and (PD) preserve the associated
term and the right dependency condition

The renaming of square roots can be avoid by using the following rule:

I Definition 3.8 (External node replacement). This rules replaces an undefined node by any
element with respect to the right dependency hypothesis:

(PR) when pt(p) ∈ {i+ 1, ..., n} and di = # : [d0, ..., dn] −→ [d0, ..., di−1, p, di+1, ..., dn]

This rules trivially preserves the semantics since no node that can be reached from the root
embeds a pointer to the replaced element since it used to be undefined. In practice, we
will only use this rule when it allows to avoid renaming, i.e., when given a set of dags all
the i-th nodes are either equal to the same node, p, or undefined, this already ensures that
pt(p) ∈ {i+ 1, ..., n} since p is the i-th node of a at least one dag. Therefore the anti-unifier
of the i-th node is p itself and we avoid to create a new square root.

If none of these rules can be applied, we can always replace undefined elements with a
positive numerical constant, e.g., 0 or 1. Therefore we have 3 different choices in order to
replace undefined elements: Undefined element in node i can be replaced by either:

another square root of the same dag, using the rules defined in definition 3.7
The i-th node of one of the dags if all i-th node are either undefined or equal to this
expression, using rule PR defined in definition 3.8
a positive constant:
when c ≥ 0, [d0, ..., di−1,#, di+1, ..., , dn] −→ [d0, ..., di−1,Expr(c), di+1, ..., dn]

Given this undefined elements replacement, we can now define how, by trying different per-
mutations as introduced in section 2.3, we can compute a set of {√, /}-constrained template
for any set of arithmetic expressions:

I Definition 3.9 (Arithmetic expression {√, /}-constrained anti-unification). Given a set of
expressions, the following algorithm computes a set of templates of these expressions:
1. Transform every expression into its dag representation.
2. Extend all dags to the same length with undefined elements.
3. Apply a permutation on the dag nodes identifiers with respect to right dependency as

introduced in definition 2.11.
4. Replace undefined elements using the different possibilities previously described.
5. Compute the {√, /}-template node by node using rules of Definition 3.6.
By trying different permutations and different undefined elements replacements, we can
compute a set of {√, /}-templates of the input expressions. Now we will see how this anti-
unification is used in a program transformation and why we want to try different templates.

4 Partial Inlining Using Anti-Unification

In this section we present how we use the anti-unification of arithmetic expressions intro-
duced in section 3 to transform the variable definitions in a program transformation. This
program transformation aims at removing square roots and divisions in some straight line
programs used in embedded systems in order to protect the control flow from rounding er-
rors. All the other aspects of this transformation are described in [9]. We assume that the
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programs we target are proved to be correct (they do not fail due to square roots of negative
number or division by zero) and only ensure the preservation of the semantics in this case.

The techniques used in this program transformation rely on transformations of boolean
formulas into formulas that do not depend anymore on square roots or divisions e.g.,

√
x > y

becomes y < 0 ∨ x > y2. However in order to ensure that these booleans are not computed
using square roots or divisions, we also need to ensure that the variables they depend on do
not depend either on square roots or divisions. In order to avoid an explosion in the size
that an direct inlining would produce, we use a partial inlining based on the anti-unification
introduced in Section 3 to eliminate divisions and square roots from these variable definitions.

In order to present the transformation of the variable definitions we need to define the
languages involved at that point of the transformation:
I Definition 4.1 (Expressions and programs normal form). The unary expressions Eu are built
with operators, the expressions E with pairs and unary expressions and the programs P
allows variable definitions and tests.

Eu := Var | Const | uop Eu | Eu op Eu | fst Eu | snd Eu

E := (E, E) | Eu

P := let Var = P in P | if P then P else P | E
where the set constants Const is included in R∪ {True, False}, the set of binary operators
bop is {+,×, /, =, 6=, >, ≥, <, ≤, ∧, ∨} and the set of unary operator uop is {√ , −, ¬}.
Therefore our aim is to use this anti-unification in order to remove the square roots and
divisions from the variable definitions before eliminating these operations in all the Boolean
expressions. The global algorithm is recursive, therefore, given a variable definition let x =
body in sc, we can assume that the square roots and divisions have been eliminated from all
the boolean part of the tests and all the variable definitions that are in body. In this case, the
body allows a decomposition into a square root and division free program part, representing
all these local variable definitions and the test cases, and the possible returned expression
corresponding to the different test cases that possibly contain divisions and square roots.
We give the following example:
I Example 4.1. The program if F then let z = a in z +

√
b else c/d denoted by p is

decomposed in a cases construction (represented as a meta-function):
cases = fun (x, y)→ if F then let y = a in x else y

And a tuple of returned expressions lexp = (z+
√
b,c/d) such that cases(lexp) = p

Now using the constrained anti-unification we use the following rule to eliminate the square
roots and divisions from the body of a variable definition:
I Proposition 4.1 (Variable definition transformation). If T is a {√, /}constrained template
of all the ei, i.e., ∀i, ei = Tσi, we have the following semantics equality:
let x = cases(e1, ..., en) in p2 sem= let var(σ1) = cases(arg(σ1), ..., arg(σn)) in p2[ x 7→ T ]
This property of the cases decomposition has been formally proven in the Pvs proof assis-
tant on a slightly different representation of variables, using projections instead of multiple
variable definitions (see [9]). Moreover since we use a {√, /} constrained template, none of
the substitution arguments (i.e., arg(σi)) contain any square root or division and therefore
the new body is free of these operations
I Example 4.2. We present an example of such a partial inlining:

let x = if y > 0 then (a1 + a2)/b else c +
√

d1 · d2 in P −→
let (x0,x1,x2) = if y > 0 then (a1 + a2,b,0) else (c,1,d1·d2) in P[x 7→ x0+

√
x2

x1 ]

The decomposition of the set of expressions coming from the different test cases directly uses
the anti-unification algorithm introduced in section 3. However there is one particular case
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we have to take care of when we want to avoid renaming using rule (PR) from definition
3.8. In this case we need to ensure the elements we want to replace the undefined with are
positive. For example the following transformation is not allowed:
let x = if y ≥ 0 then √y else 0 in P −→ let x = if y ≥ 0 then 1 else 0 in P[x 7→ x.√y]

since 0 is not absorbing for failure (square root of negative numbers) and therefore the pro-
duced scope P[x 7→ x.√y] would fail when y ≤ 0. However, using the hypothesis that the
input program does not fail, we are able to build a set of expressions that are positive by
taking for example the square roots that were defined previously in the program. We will
only use such expressions to apply the undefined element replacement from Definition 3.8.

5 Algorithm Implementation

Due to the different choices, the number of possible templates increases very fast with the
number of expressions to anti-unify and the length of the corresponding dags. Indeed, let n
be the number of dags and l + 1 the maximal length, since for each dag we have l! possible
pointers identifiers permutations (the head node have to stay as head element), and even
if some of them do not respect the right dependency condition, the maximal number of
permutations can grow up to l!n. The different replacements of undefined elements also
increase the set of possible templates. However, experiments show that, in most cases, there
are a lots of templates that are equivalent regarding the size of the output program, this
allows us to only use a random fraction of all the possible permutation and still get the best
possible results.

This anti-unification has been tested during the transformation of different programs
using the OCamL implementation of the program transformation (see [9]). We also tested
the anti-unification by transforming simple variable definitions with different formulas as
scope (e.g., let x,y = ... in x * y > a ) in order to only reflect the consequences of the
anti-unification choices. We have the following convention: 4_3_def define 3 tuples of 4
elements, for each file and each percentage of permutations tried, we give the best output
size (in KB) and time to transform:

% permutations 10 1 0.1
5_2_def_scope1 1464 1m15 1464 9s1 1465 1s2
5_2_def_scope2 3552 1m15 3552 9s1 3553 1s1
4_3_def_scope1 587 1m17 613 2s1
4_3_def_scope2 5265 1m17 5126 2s2

From these results, we can see that:
time taken by the transformation depends on the template computation, not on the scope
output size depends on the scope of the variable definition, not on the body
redundancy allows us to take a small sample of permutations to get the optimal template

However, even if we eliminate some of the templates, the worst cases can produce programs
that are hundreds of time bigger than the best one. Avoiding renaming expressions is also
crucial on longer programs since when we do not take care of such renaming, the size of the
produced program can be thousands of time bigger than the smaller one.

6 Conclusion

In this paper we introduced a constrained anti-unification, that is an anti-unification where
the language allowed in the terms of the substitution is a subset of the one used for the
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input terms. Several general properties of such anti-unification have been presented in order
to extend the set of possible templates using some equational theory and therefore to find
the more suitable one in each context.

We used this anti-unification as a tool to transform variables definitions with conditional
expressions in a program transformation that eliminates square roots and divisions. Due to
the rich equational theory we are allowed to use in this context (i.e., arithmetic), the number
of possible templates increase exponentially with the complexity and is not easy to handle.
However, the use of this specialized anti-unification algorithm allowed us to partially inline
variable definitions in order to remove square roots and divisions from them by almost only
inlining the operations we want to eliminate. This allowed us to produce programs whose
output size is still reasonable in comparison to a complete inlining.

We now aim at proving the correctness of this anti-unification in the Pvs proof assistant
for any permutation and any undefined element replacement in order to complete the proof
of the program transformation. We also plan to use this template computation to extend
the language this transformation handles to bounded loops and function definitions.
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